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A parabolic equation model for scattering in the ocean

Michael D. Collins and Michael F. Werby

Naval Ocean Research and Development Activity, Stennis Space Center, Mississippi 39529

(Received 20 July 1988; accepted for publication 18 January 1989)

The small-angle-of-propagation limit and the method of matched asymptotics are applied to
derive an efficient model for solving realistic underwater acoustics problems involving both
propagation and scattering from a submerged object. The propagation and scattering aspects of
the waveguide scattering problem are decoupled by approximating the waveguide Green’s
function on the surface of the scatterer. For low frequencies, the small-angle limit also allows
one to approximate the incident field with a horizontally propagating plane wave and the
scattered field with an azimuthally specular point-source field. With these approximations,
scattering calculations can be performed efficiently in the time domain. Calculations involving
the three-dimensional parabolic equation and the time-domain parabolic equation are

presented.

PACS iwumbers: 43.30.Gv, 43.30.Bp, 43.30.Dr

INTRODUCTION

Several models have been developed for solving prob-
lems in both underwater propagation' and free-space scat-
tering.” Yet these remain highly active areas of research.
Thus it is not surprising that model development for scatter-
ing in a waveguide, a problem involving both propagation
and scattering. has only recently begun. The few models that
have been developed '~ do not take advantage of asymptotic
limits. Thus these models lack both simplicity and efficiency
and are difficult to apply to realistic problems.

The small-angle limit (nearly horizontal rays) is per-
haps the most useful asymptotic limit in underwater acous-
tics. This limit is used to derive the parabolic equation
(PE).” which gives accurate and efficient results for propa-
gation problems in complicated ocean environments. The
three-dimensional PE (3DPE)’" is required in general.
However. the two-dimensional PE (2DPE) is valid when-
ever azimuthal diffraction is negligible.'"" The inverse Four-
ier transform is applied to the PE to derive the time-domain
PE (TDPE)."" ' which is an accurate and efficient pulse
propagation model. If the source and receiver are sufficient-
ly far from the scatterer. these models can be used to propa-
gate the incident field to the scatterer and the scattered field
to the receiver.

For a point source, the nearfield effects of attenuation
and variations in sound speed and density do not affect the
farfield.'” Since a scatterer behaves like a source, this sug-
gests that the far waveguide scattered field is not affected by
refraction. reflection, and dissipation near the scatterer. We
demonstrate this using the results of Ref. 17 and the method
of matched asymptotics.'™ We show that the scattering and
propagation aspects of the waveguide scattering problem de-
couple into the homogeneous half-space scattering problem
and simple propagation problems.

The half-space scattering problem is further simplified
for low frequencies using the small-angle limit. The incident
ficld can be approximated by a plane wave, and the scattered
field can be approximated by the field due to an azimuthally
specuiar point source. These approximations allow efficient
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pulse scattering calculations. Scattering calculations involv-
ing the TDPE and the 3DPE are presented.

I. THE FARFIELD APPROXIMATION

Cylindrical coordinates are used with z being the depth
below the ocean surface. § being the azimuth angle, and »
being the horizontal distance from the center of the scatterer
I' of length L at z = z,. The point source € is located at
(r,2.0) = (r,,z,..60). The coordinate system and geometry
are illustrated in Fig. 1. The ocean depth is denoted by d. The
acoustic pressure p satisfies the pressure release boundary
condition at the ocean surface and the outgoing radiation
condition at infinity. For the time-harmonic problem with
circular frequency w, the complex pressure Pis defined by

prz.0,t) = P(r.z,0)exp( — iwl). (1)

where 7 is time. Away from I and (1, Pis assumed to satisfy
the reduced wave equation for a medium with variable den-
sity'”

pV(1/p)VP] + K-P=0. (2)

where p is the density and the complex wavenumber
K =k +iyB k is used to model attenuation that depends
linearly on frequency.” The real wavenumber is & = w/c.
where ¢ is the sound speed. The reference wavenumber is
k, = k(z,).the reference sound speed is ¢, = ¢(z,). the sedi-
ment attenuation in decibels per wavelength (dB/A) is f3,
and y = (407 log,,, ¢)

Rays that propagate within the critical angle é, from
horizontal are called trapped rays. We define € = tan” o,
and assume that € € 1. The ¢ritical range r, which is defined
by r tan @, =d — z,. is the range at which the steepest
trapped ray from the center of I intersects the ocean bottom.
Tojustify using the PE approximation, we assume that range
and azimuth vanations in the environment are weak. The
incident field P, is defined to be the field due to © in the
absence of T, and the scattered field P ois defined by
P = P, + P . The waveguide Green's function G(x,X") satis-
fies the pressure release boundary condition at the ocean
surface, the outgoing radiation condition at infinity, and
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FIG. 1. Coordinate systems and geometry: (a) View from the side; (b) view
from above the ocean surface.

pV-1(1/p)VG] + K°G = —4rd(x —X'), (3)
X = (xp.2) = (rcos O.rsin 6,2). (4)

Our definition of G differs from the usual definition of the
Green’s function by a factor of 477. The scattered field has the
representation

1 JG
P = —(x,x")P(x'
+(0) 47f.[(811(XX) x)
ol

- il:(x')(i(x.x'))d/i’. (5)

an

where d /adn is the outward normal derivative, G is the field
d te to a point source at x = x', and 4G /dn can be approxi-
mated with arbitrary accuracy by a pair of point sources near
x = x". Thus P_can be approximated with arbitrary accura-
cy as the field due to a superposition of point sources on and
near dI.

1896 J. Acoust. Soc. Am., Vol. 85, No. 5, May 1989

In the homogeneous free space with ¢ = ¢, and 8 =0,
the integral representation can be used to obtain the follow-
ing farfield expansion for the free-space scattered field (P, ),
for an incident plane wave of unit amplitude"

(P),(x)~D,(6,)G,(x.x,), (6)
G, (x,x") = [expliky]x — x']))/]x — x'I, (7)
x, = (0,0,z,), (8)
d=tan '[(z-z,))/rl. (9)

For large r, dH /3r = O(k,€), dH /02 = O(k,e' "), and
JH /30 < k,r (Ref. 8). For the case k,L = O(1), the weakly
varying coefficient function H(x.x") can be replaced by the
constant H(x,x,,) for x’ € dTI" to leading order in €. With this
approximation, the integrand in Eq. (5) is reduced to a form
in which the analysis of Ref. 21 can be applied for r>» L. We
obtain

X=X (=) = — xR (11
G(x,x")=G(x.X,)exp( — ikoX'*F), (12)
G N . N

P xx')y =~ — ik PG (XX, )exXp( — ik X' 7). (13

an

where ¥ = (cos O.sin 8,0) and # is the outward normal unit
vector on dI'. Substituting Eqs. (12) and (13) into Eq. (5).
we obtain the waveguide analog of Eg. (6) for large r:

P (x)~D(0)G(x.x,), (14)
where
D) = — L”(ik“ﬁ-mx') + 9 (x'))
47 on
e
Xexp( — ik,x""P)dA " (15)

Thus the scattered field can be approximated by a specular-
point-source field for r> L. This result, which was obtained
for a rigid sphere in Ref. 5, is in agreement with some obser-
vations for multipole sources.”” Since Eq. (14) is a leading-
order approximation, it should be most accurate in the for-
ward and specular scattering directions, where P_is most
intense. In other directions, P, is relatively weak. and higher-
order asymptotic terms may be important.

Il. THE MATCHED ASYMPTOTIC SOLUTION

The matched asymptotic solution of a differential equa-
tion is composed of the inner solution, which is valid in the
inner region of the domain, and the outer solution. which is
valid in the outer region of the domain (sometimes an inter-
mediate region is required ). Different terms of the differen-
tial equation are important in the two regions. For example,
we consider the matched asymptotic solution of Eq. (3). A
leading-order inner solution is obtained by assuming that the
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inner region near {2 is homogeneous with ¢ = c,and =0
(Ref. 17). In the outer region far from Q (k7> 1), the
asymptotic expression for the Hankel functions appearing in
the normal mode solution™"** of Eq. (3) is valid. Thus Eq.
(3) may be replaced with the PE in the outer region.

If the inner and outer regions overlap, the following
matched asymptotic solution of Eq. (3) is obtained:

Gm r<ry
G~ 16
Gnu( r> r()’ ( )
where r, < r. (Ref. 17). The inner solution G,, is the homo-

geneous half-space Green’s function, which satisfies the
pi~ssure release boundary condition at z = 0, the outgoing
radiation condition at infinity, and

VG, +k} G, = —4ns(x —x'), (17)
G, (x,x') = G (x,x") — G, (x,,X'), (18)
X, = (x0p, — 2). (19)

For many problems, G,, excites the propagating normal
modes more accurately than the Gaussian PE starter.'” Al-
though G,, breaks down for k,(z — d) > 1, this does not af-
fect the accuracy of G, because rays that enter the sediment

in the inner region are not trapped. In the outer region r > r,,
the outer solution satisfies

pvo(lvcm,,) +K*G,, =0, (20)
p

with the boundary condition G, = G,, at r = r,. The PE
can be used to solve Eq. (20) if kyry> 1.

Treating the region near a point source as a lossless,
homogeneous half-space causes negligible errors in the far-
field because refraction in the ocean is weak, attenuation in
the ocean bottom is weak, and rays that reflect from the
ocean bottom near the source propagate at large vertical an-
gles and are not trapped by the oceanic waveguide. Since T
behaves like a collection of point sources, one would expect
that an analogous matched asymptotic solution that in-
volves the solution of the half-space scattering problem ex-
ists for the waveguide scattering problem.

The waveguide scattering problem can be posed as an
integral equation involving G. We do not write down the
integral equation because its form depends on the properties
of I'. An asymptotic solution of the integral equation is ob-
tained by approximating G with G,, on dI", which gives the
integral equation for the homogeneous half-space scattering
problem having the solution (P,),, with the total field P, .
This approach is an alternative to the Kirchhoff method,
which is used to solve scattering integral equations by ap-
proximating Pon dI'. Thus we obtain the following matched
asymptotic solution for P_:

p ((P‘)... r< o an
' (P r>r,
1 .
(Lo ) vk o (22)
/)
with the boundary condition (P.),,,, = (P.),, atr = r,. The

PE can be used to solve Eq. (22) if k7> 1. Decoupling the
waveguide scattering problem is a useful simplification be-
cause models for solving the half-space scattering problem
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and the propagation problem in the outer region have been
developed.

The matched asymptotic solution for a point source is
very accurate in the outer region,'” and I" behaves like a
collection of point sources. Unlike a point source, however,
I" can induce multiple reflections between itself and the
ocean surface and bottom. The matched asymptotic solution
accounts for multiple reflections between I' and the ocean
surface. Unless I is very close to the ocean bottom, rays that
travel between two points on dI" via bottom reflection meet
the ocean bottom at nearly normal incidence for which the
reflection coefficient is small. Furthermore, many of the rays
involved in multiple reflections between [ and the ocean
bottom propagate away from I" with large angles and are not
trapped within the water column. Thus the matched asymp-
totic solution for P, should be very accurate in the outer
region.

Although (P,),, breaks down for k,,(z — d) > 1. the fol-
lowing asymptotic solution is valid for &,(z — d) > 1:

1 aG
P ~ - M ' Pm '
(%) 4ﬁff(an(XX) )
Jar

JaP,
—J(x’)G(x,x'))dA " (23)

on
Since the waveguide Green’s function is used in Eq. (23).
this representation accounts for refraction, reflection, and
attenuation in the region r < r,,. Since Eq. (16) is very accur-
age in the outer region, however, it is not beneficial to use Eq.
(23) in the outer region.

Let us outline the sequence of steps involved in the solu-
tion of scattering problems with the model. The incident
field 1s computed with a propagation model such as the PE.
The 3DPE must be used if azimuthal diffraction is impor-
tant. A scattering model is then used to compute (P),, at
r = r,. Since the accuracy of (P, ),, improves as r,, decreases.
it is desirable to choose r, as small as possible. Since many
scattering models assume an incident plane wave, it may be
useful to use the waveguide normal modes to decompose P,
into plane waves as discussed in Ref. 5. Although the half-
space scattering problem is much easier than the waveguide
scattering problem, it is more difficult than the free-space
scattering problem. Multiple reflections between I' and the
ocean surface give rise to mostly wide-angle rays if I' is not
too close to the ocean surface. Thus multiple reflections may
be ignored if z, is sufficiently large. This aproximation.
which was used in Ref. §, is equivalent to imaging the free-
space scattered field to obtain

(P, (X)=(P),(x) = (P),(x,).

r > r,. The PE may be used if k,r,> 1. The 3DPE is required.

in general, because P, and possibly ¢, p. and # depend on 6.
In stratified environments, however, azimuthal diffraction —

diminishes rapidly with range, and the 3DPE is required
only in the intermediate region r, < r < r,. The 2DPE is valid
forr>r,.

M. B. Collins and M. F Werby. Parabolic equation scattering mode! | 1893
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lil. LOW-FREQUENCY APPROXIMATIONS

For the remaining discussion, we assume that
koL = O(1). The results in the remaining sections are valid
for scatterers of arbitrary composition, shape, location, and
orientation. For the examples, however, I is taken to be a
rigid spheroid of length L and girth 7B, where k,B = O(1),
with its major axis parallel to the x axis. Since Q is far from I
and range and azimuth variations are weak, the PE can be
used to compute

P = U, (rz0"exp(iky,'), (25)

where 7' is the horizontal distance from {2 and 6" is the azi-
muth angle about €. Far from Q, JU /9r
= Olky€), AU, /dz = O(kye'"?), and SU, /30" <k, (Ref.
8). Thus P, can be approximated to leading order on 4T by a
plane wave

Pl -~ Ul (rl ’z()’el + 7T)

Xexp[iky(r, —xcos @, —ysing,)]. (26)

This is a useful approximation because many scattering
models assume an incident plane wave. If B< L, the accura-
cy of Eq. (26) depends on the orientation of I'. Higher fre-
quencies are permitted for broadside incidence than for end-
on incidence.

A standard approach for matching the inner and outer
solutions of a matched asymptotic solution is to consider the
outer expansion of the inner solution.>® For trapped rays,
D (8,6) ~D,(6,0) in the limit €—0. Thus we use Eq. (6)
with ¢ = 0 and Eqs. (18) and (24) to obtain the outer ex-
pansion of (P,),,:

m-

(PHW' = U, (r, 20,0, + m)exp(ikyr, ) D, (6,0)

X G,, (X,X,). 27

For the case r, = r, (no intermediate region required), we
use the fact that G = G,, and the matching principle™® to
obtain the specular-point-source approximation

(P))ow = P (r,.2,,0, + T)D,(6,0)G(x,x,). (28)

This approximation produces a significant gain in efficiency
because D,, which is difficult to compute, appears in Eq.
(28) only for ¢ = 0. We deduce that D(0) « D,(6,0).

To investigate the accuracy of Eq. (28), we consider the
problem described in Table I, where subscripts w and b de-
note water and bottom values. The free-space radiation pat-
tern 20 log,,|D,(6,0)| appears in Fig. 2 for large r and for
r = r.. Since the radiation pattern has nearly settled down at
r=r. Eq. (28) should be a good approximation for this
problem. Since r, is substantially less than r,, Eq. (16) is
very accurate. However, it is apparent from Fig. 3 that the

TABLE L Data for the frequency-domain problem.

o 200 T d 225m ¢, ~ 1500 m/s
e 1600 m/s p. LSg/em’ B, - 0.5dB/2
L- SOm B 10m ¢ - 204
ro-202.1m ryo 1000m r,-15m

z,= 150m r. Skm z, =~ S0m

0 - 135 z, =~ S0m

1898 J. Acoust. Soc. Am, Vol. 85, No. 5, May 1989

_________

FIG. 2. The free-space radiation pattern at r = r, (solid curve) and for
large r (dashed curve).

free-space radiation pattern at r = r, has not settled down.
Thus we use the 3DPE for r,<r<r,.

We used Eq. (26) to simplify P, to a plane wave and Eq.
(24) and the T-matrix method*™*’ to compute D, and
(P,),,. Transmission loss for P, and P, computed with Eq.
(28) and with the PE using (P,),, as an initial condition
appears in Fig. 4. From the data in Table 1, we observe that
the approximation D, (6,6)=D,(6,0) is not accurate for
¢ <&, in the directions @ = 0°, 180° and 225°. This explains
the differences in the solutions for P, appearing in Fig. 4 for
these directions. The solutions are in excellent agreement in
the other directions including the forward and specular di-
rections.

..........

FIG. 3 The aecsspace radiation pattern at r
large r (dashed curve)

r, tsolid curvey and o

M. D. Co'lins and M. F. Werby: Parabolic equation scattering model 1898




Loss (dB re 1m)

(a)

150

Range (km)

50

0

LN
30 M

1o

Loss (dfi re fin)

(o)

2 i 3 8
Range (ko

a0

il

90

1104

Loss (dB re 1)

[(3)

(5

0 q{" ' - {

90

10

Loss (dB re 1)

130

th0

(d)

Range (K}

50

90 1

1o

Loss (dB re 1m)

130

Vv vy

N

S0

2 4 M 8
Range (km)

U]

70

90 1

Loss (dB re 1m)

50

90

110

Loss (dH re im)

130

50

ange (ki

70

a0

un

Loss (dB re 1m)

130

34

(h)

4 € [}
Range (hmi

FIG. 4 The specular-point-source approximation (solid curves), the full matched asy mptotic solution mvolving PE caleulations ¢dashed curves ), and the

incident field (hroken curves) for: (a) ¢

1899

0 (hy 0,

J Acoust. Soc. Am_, Vol 85 No. 5, May 1989

50ty 9y e 135

(et 1RO (e

M. D. Collins and M. F. Werby: Parabolic equation scattering model

RAREN RIS

270 and tho o RN

1899




TABLE 1L Behavior of 20 log,,|D, (6,4)|. where E, = D if Eq. (14) holds. The normal modes ¢, and
eigenvalues &, are defined in Refs. 23 and 24. We define the
é=0 4=5 4=100 4=15 4=200  modal radiation pattern associated with ¢, to be
20 log,,|E, (0)]. For the stratified environment described in

=0 11.69 12.14 13.40 15.27 17.50 .
0= 45 25.68 25.70 25.75 35.80 25.78 Table I, modes 1, 3, 6, and 10 propagate with angles of ap-
0 =90° 13.12 13.08 12.96 12.76 12.48 proximately 1.82°, 5.48°, 11.04°, and 18.62°. The radiation
zf :;3 :8; ;:’; :(7;2 :'2; :5: patterns for these modes at r = r, appear in Fig. 5 with the
6= 225 RIS 868 - 1049  _ 1467  — 2007 far free-space radiutio'n pattern. The agreement with the
6= 270 - 0.06 - 0.04 0.02 010 020 free-space pattern, which is excellent for mode 1. decreases
6 =315’ 26.15 26,03 25.68 25.11 24.35 with mode number. This is consistent with the small-angle
asymptotics.
The following asymptotic expression is valid in a strati-
fied environment for k,r> 1: IV. LOW-FREQUENCY PULSE SCATTERING
P, "”"Z E (00, (z) ¢, () H " (k,r), (29) To derive a matched asyrpp'totlc so]gtlon for pulsed
m sources, the Fourier transform is inverted in Eq. (27). The
L]
270 270 {

(@) B (©

L0
‘
90 90
270 270
----- © e
N
0 180 oo T T AV 0
' . 7\_./ \\
e T A
; S \
| (-«1 |
| g B
90 90

FIG. 5. The far frec-space radiation pattern (dashed curvesy and the modal radiation patterns (solid curves) tor: G mode 1. ch) mode 3ote) made 6 and

(d) mode 10,
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TABLE III. Data for the time-domain problem.

w=50rs ' d=250m ¢, = 1500 m/s
¢, = 1600 m/s pr = 1L5g/em’ B, =0.5dB/A
L=50m B=10m 6. =204
r.=2688m r,= 100 m 2, = 150m

r, = 10km z,=25m a4 =15

6, =45

TDPE can be used to compute the quantity u, (r.z,8".1)
=p (rz0't+r/c,). where

b 1 [ C o .
U(rze' = Tf u, (2,0 nexpliot)dt, (30)
Fars ,,
and p, is the incident field. Since A,L = O(1), we assume a

finite bandwidth @, <@ <w, and invert the Fourier trans-
form in Eq. (27) to obtain

P :J U.(r.zo.0, + 7)D,(6,0)

<G, (x.x,)exp[ —iw(t —r/c,) Jdw. (31)

We substitute Eq. (30) into Eq. (31) and interchange the
order of integration to obtain

d d
(P = LF(@.: _ —+_’) _ LF(a.z _ —i’—)
d d

7i

Cy + Cy
(32)
d° =r +(z+2z,)% (33)
Fa.r) :f K(0,t —t"yu,(r,z2,6, +mt’')det’, (34)
K(6.t) = —]— D, (6.0)exp( — iwt)de. (35)

The integral operator in Eq. (34) transforms incident wave-
forms into scattered waveforms. If Eq. (28) is valid, (p, )"
may be used to tnitialize the TDPE at r = 1, < r .

To illustrate the time-domain solution, we consider the
Hanning weighted sinusoidal source function™

O<teT,
otherwise,

— cos wi)sin wt,

i
flty = {(‘) (36)

100

Depth (m)
o
2
2

00

104 :
800 600 400 200 0

Relative time (ms)

FIG. 6. The incident pulse. Patterns of the first three normal modes are
clearly visible.
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where @ = 507s ' and T = 87/w, and an example for

which data appear in Table II1. The incident field p, comput-
ed with the TDPE appears in Fig. 6. The ocean bottom is
marked with a horizontal line. The solid contours corre-
spond to p, > 0; the dashed contours correspond to p, <0.
Although the time-dependent wave equation does not sepa-
rate in depth since ¢ depends on z, normal mode structure is
visible in Fig. 6. The first mode is present near ¢ = 150 ms,
the second mode near ¢ = 250 ms, and the third mode near
t = 400 ms. We used the T-matrix method to calculate D,.
The incident waveform u, (r,.z,,0, + #,t) and the scattered
waveform F(8,.t) appear in Fig. 7. Equation (32) was used
to calculate (p, )", which appears in Fig. 8.

The TDPE was applied in the specular direction to ob-
tain the scattered field (p,).,.,. which appearsin Fig. 9. Nor-
mal mode structure is also visible in (p.),.,.. However, the
second mode is not excited because it vanishes near the cen-
ter of I'. Furthermore, the arrival times of the modes in the
scattered field are qualitatively different from the arrival
times of the modes in the incident field because the scattering
process redistributes the energy among the modes.” In con-
trast to the incident field. the first mode arrives twice, near
t =200 ms and near ¢ = 400 ms. The third-mode arrivals
behave similarly. Furthermore, the arrival times of the first
and third modes overlap.

V. CONCLUSIONS

A matched asymptotic solution has been derived for un-
derwater acoustics problems involving both propagation
and scattering. The propagation and scattering aspects of the

(@
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FIG. 8. The half-space scattered field (p,)"" at r = 100 m in the specular
direction 8, = 45°.

problem are decoupled. The model is valid for scatterers of
arbitrary geometry and composition in three-dimensional
environments. Since the small-angle limit has been used. the
model is efficient and accurate. In its most general form, the
model requires the solution of the half-space scattering prob-
lem and the 3DPE. If the scatterer is far from the ocean
surface, however, the half-space scattering problem can be
replaced with the free-space scattering problem. If the scat-
terer is far from the ocean bottom, the solution of the 3DPE
is not required because the inner region extends to a relative-
ly large range. For low frequencies, the incident field can be
approximated by a plane wave, and the scattered field can be
approximated by the field due to an azimuthally specular
point source. These approximations make low-frequency
pulse scattering problems practical.
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